Approximation and compression of scattered data by meshless multiscale decompositions
نویسندگان
چکیده
منابع مشابه
Approximation and compression of scattered data by meshless multiscale decompositions
A class of multiscale decompositions for scattered discrete data is introduced, motivated by sensor network applications. A specific feature of these decompositions is that they do not rely on any type of mesh or connectivity between the data points. The decomposition is based on a thinning procedure that organizes the points in a multiscale hierarchy and on a local prediction operator based on...
متن کاملScattered data approximation of fully fuzzy data by quasi-interpolation
Fuzzy quasi-interpolations help to reduce the complexity of solving a linear system of equations compared with fuzzy interpolations. Almost all fuzzy quasi-interpolations are focused on the form of $widetilde{f}^{*}:mathbb{R}rightarrow F(mathbb{R})$ or $widetilde{f}^{*}:F(mathbb{R})rightarrow mathbb{R}$. In this paper, we intend to offer a novel fuzzy radial basis function by the concept of so...
متن کاملScattered manifold-valued data approximation
We consider the problem of approximating a function f from an Euclidean domain to a manifold M by scattered samples [Formula: see text], where the data sites [Formula: see text] are assumed to be locally close but can otherwise be far apart points scattered throughout the domain. We introduce a natural approximant based on combining the moving least square method and the Karcher mean. We prove ...
متن کاملParametric Tilings and Scattered Data Approximation
Abstract: This paper is concerned with methods for mapping meshes in IR to meshes in IR in such a way that the local geometry of the mesh is as far as possible preserved. Two linear methods are analyzed and compared. The first, which is more general and more stable, is based on convex combinations while the second is based on minimizing weighted squared lengths of edges. These methods can be us...
متن کاملRobust local approximation of scattered data
In this paper, we modify the robust local image estimation method of R. van den Boomgaard and J. van de Weijer for the approximation of scattered data. The derivation of our knot and data dependent approximation method is based on the relation between the Gaussian facet model in image processing and the moving least square technique known from approximation theory. Numerical examples demonstrat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied and Computational Harmonic Analysis
سال: 2008
ISSN: 1063-5203
DOI: 10.1016/j.acha.2007.10.003